𝖄𝕺🌎𝕿𝕽𝕺¥

𝖄𝕺🌎𝕿𝕽𝕺¥

𝕴 𝖉𝖔 𝖒𝖆𝖌𝖎𝖈
github

WSL安装CUDA独显 PyTorch 深度学习环境配置,测速为什么要用WSL?

前言#

为了预习大三课程,想提前学习下 PyTorch。
于是我遇到了神仙学习教程《动手学深度学习》,同时以此为参考完成了环境配置,感谢大佬们无私奉献 Thanks♪(・ω・)ノ

本教程展示了独显 windows 电脑用 WSL Ubuntu 子系统跑 PyTorch 深度学习的环境配置,至于为什么用 WSL 嘛。因为自己测试一番发现性能比 win 强很多。篇幅有限,省略 WSL 安装过程。

安装#

设备:#

Windows11: WSL-Ubuntu-22.04
1660ti-6g 独显

Miniconda 安装#

Miniconda 官网 wget 方式配合链接下载对应 Linux 版本

wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Linux-x86_64.sh

sh 指令默认安装

sh Miniconda3-py310_23.3.1-0-Linux-x86_64.sh -b

初始化环境

~/miniconda3/bin/conda init

提示关闭该 Terminal,重新打开一个。
创建新环境,名称 d2l 可更改。

conda create --name d2l python=3.9 -y

启动环境

conda activate d2l

注意每次运行都要运行此指令,切换到 d2l 环境。

如要退出当前环境:conda deactivate
如要完整删除名为dal的环境:conda remove -n d2l --all

CUDA 安装#

CUDA(官网)是英伟达官方的深度学习工具包,如图是 WSL 的选项。运行下载代码。
cuda_download

wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda

添加完成后需更新~/.bashrc文件

sudo vi ~/.bashrc

i进入 insert 模式,添加以下代码到文件最后,注意修改为对应版本。

export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Esc, :wq,回车保存。

source ~/.bashrc

运行以下代码,输出如图则 CUDA 安装成功。

nvcc -V

nvcc_v_printout

安装 PyTorch 框架#

GPU 版本的需要在PyTorch 官网选择,我下的是 Preview 版本的刚好适配 CUDA12.1 如图,不过向下兼容性也不错。
pytorch_download

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch-nightly -c nvidia 

下载 d2l 包

pip install d2l==0.17.6

显卡测试#

克隆测试文件

git clone https://github.com/pytorch/examples.git
cd example_pytorch/mnist/

替换main.py文件内容为以下:

from __future__ import print_function
import argparse
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=14, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--no-mps', action='store_true', default=False,
                        help='disables macOS GPU training')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    use_mps = not args.no_mps and torch.backends.mps.is_available()

    torch.manual_seed(args.seed)

    if use_cuda:
        device = torch.device("cuda")
    elif use_mps:
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {'num_workers': 5,	#线程数
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)

    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    start_time = time.time()
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()
    end_time = time.time()
    total_time = end_time - start_time
    print(f"Total time: {total_time:.2f} seconds.")
    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")


if __name__ == '__main__':
    main()

此处采用 5 线程,可自行修改。
运行对应模式测速,根据配置可能 cpu 和 gpu 运行代码刚好相反。

$ python main.py	#cpu模式
$ CUDA_VISIBLE_DEVICES=2 python main.py  #gpu模式

测试代码来源及参考:
pytorch/examples - github
深度学习:Windows11 VS WSL2 VS Ubuntu 性能对比,pytorch2.0 性能测试!

完成!#

至此环境配置完毕,我继续跟随《动手学深度学习》了。

mkdir d2l-zh && cd d2l-zh
curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh.zip
unzip d2l-zh.zip && rm d2l-zh.zip
cd pytorch

。。。。。

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。