𝖄𝕺🌎𝕿𝕽𝕺¥

𝖄𝕺🌎𝕿𝕽𝕺¥

𝕴 𝖉𝖔 𝖒𝖆𝖌𝖎𝖈
github

WSL安裝CUDA獨顯 PyTorch 深度學習環境配置,測速為什麼要用WSL?

前言#

為了預習大三課程,想提前學習下 PyTorch。
於是我遇到了神仙學習教程《動手學深度學習》,同時以此為參考完成了環境配置,感謝大佬們無私奉獻 Thanks♪(・ω・)ノ

本教程展示了獨顯 windows 電腦用 WSL Ubuntu 子系統跑 PyTorch 深度學習的環境配置,至於為什麼用 WSL 嘛。因為自己測試一番發現性能比 win 強很多。篇幅有限,省略 WSL 安裝過程。

安裝#

設備:#

Windows11: WSL-Ubuntu-22.04
1660ti-6g 獨顯

Miniconda 安裝#

Miniconda 官網 wget 方式配合鏈接下載對應 Linux 版本

wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Linux-x86_64.sh

sh 指令默認安裝

sh Miniconda3-py310_23.3.1-0-Linux-x86_64.sh -b

初始化環境

~/miniconda3/bin/conda init

提示關閉該 Terminal,重新打開一個。
創建新環境,名稱 d2l 可更改。

conda create --name d2l python=3.9 -y

啟動環境

conda activate d2l

注意每次運行都要運行此指令,切換到 d2l 環境。

如要退出當前環境:conda deactivate
如要完整刪除名為dal的環境:conda remove -n d2l --all

CUDA 安裝#

CUDA(官網)是英偉達官方的深度學習工具包,如圖是 WSL 的選項。運行下載代碼。
cuda_download

wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-1-local_12.1.1-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda

添加完成後需更新~/.bashrc文件

sudo vi ~/.bashrc

i進入 insert 模式,添加以下代碼到文件最後,注意修改為對應版本。

export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Esc, :wq,回車保存。

source ~/.bashrc

運行以下代碼,輸出如圖則 CUDA 安裝成功。

nvcc -V

nvcc_v_printout

安裝 PyTorch 框架#

GPU 版本的需要在PyTorch 官網選擇,我下的是 Preview 版本的剛好適配 CUDA12.1 如圖,不過向下兼容性也不錯。
pytorch_download

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch-nightly -c nvidia 

下載 d2l 包

pip install d2l==0.17.6

顯卡測試#

克隆測試文件

git clone https://github.com/pytorch/examples.git
cd example_pytorch/mnist/

替換main.py文件內容為以下:

from __future__ import print_function
import argparse
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=14, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--no-mps', action='store_true', default=False,
                        help='disables macOS GPU training')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    use_mps = not args.no_mps and torch.backends.mps.is_available()

    torch.manual_seed(args.seed)

    if use_cuda:
        device = torch.device("cuda")
    elif use_mps:
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {'num_workers': 5,	#線程數
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)

    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    start_time = time.time()
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()
    end_time = time.time()
    total_time = end_time - start_time
    print(f"Total time: {total_time:.2f} seconds.")
    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")


if __name__ == '__main__':
    main()

此處採用 5 線程,可自行修改。
運行對應模式測速,根據配置可能 cpu 和 gpu 運行代碼剛好相反。

$ python main.py	#cpu模式
$ CUDA_VISIBLE_DEVICES=2 python main.py  #gpu模式

測試代碼來源及參考:
pytorch/examples - github
深度學習:Windows11 VS WSL2 VS Ubuntu 性能對比,pytorch2.0 性能測試!

完成!#

至此環境配置完畢,我繼續跟隨《動手學深度學習》了。

mkdir d2l-zh && cd d2l-zh
curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh.zip
unzip d2l-zh.zip && rm d2l-zh.zip
cd pytorch

。。。。。

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。